Hypergroups derived from random walks on some infinite graphs
نویسندگان
چکیده
Wildberger gave a method to construct a finite hermitian discrete hypergroup from a random walk on a certain kind of finite graphs. In this article, we reveal that his method is applicable to a random walk on a certain kind of infinite graphs. Moreover, we make some observations of finite or infinite graphs on which a random walk produces a hermitian discrete hypergroup.
منابع مشابه
Hypergroups associated to random walks on the Platonic solids
We explicitly construct the convolution hypergroups of spheres in the vertex graphs of the classical Platonic solids, their character tables, and the structure of their dual signed hypergroups. This allows us to easily determine certain aspects of the random walks on these graphs. The character tables share many of the pleasant properties of character tables of finite groups.
متن کاملAnalysis on Symmetric Cones (oxford Mathematical Monographs)
measure always exists on a commutative hypergroup K, and there always exists a 'Plancherel measure' on the dual space K of equivalence classes of irreducible representations of K, with respect to which Plancherel's formula holds for Fourier transforms. In contrast with the case of a locally compact abelian group, however, the Plancherel measure is not necessarily a Haar measure on K, and K need...
متن کاملBessel convolutions on matrix cones: Algebraic properties and random walks
Bessel-type convolution algebras of bounded Borel measures on the matrix cones of positive semidefinite q×q-matrices over R,C,H were introduced recently by Rösler. These convolutions depend on some continuous parameter, generate commutative hypergroup structures and have Bessel functions of matrix argument as characters. Here, we first study the rich algebraic structure of these hypergroups. In...
متن کاملBranching random walks in random environment on Cayley graphs
We review some recent results concerning recurrence and transience for branching random walks in random environment on ddimensional lattices and on trees. We obtain some generalizations of these results for the case when the branching random walk in random environment takes place on arbitrary infinite connected Cayley graph.
متن کاملRandom Walks on Directed Covers of Graphs
Directed covers of finite graphs are also known as periodic trees or trees with finitely many cone types. We expand the existing theory of directed covers of finite graphs to those of infinite graphs. While the lower growth rate still equals the branching number, upper and lower growth rates do not longer coincide in general. Furthermore, the behaviour of random walks on directed covers of infi...
متن کامل